Captive feeding programs to increase juvenile monk seal survival: A case study and future applications

Charles Littnan
Tenaya Norris
Frances Gulland
Bob Braun

The Marine Mammal Center
Advancing Rehabilitation, Scientific Discovery and Education

NOAA
Population Status

- Population is endangered and declining ~4% yearly
- Causes of mortality are numerous
- Juvenile survival in NWHI: < 1 in 5 seals survives to adulthood
Strategies to Increase Juvenile Survival

- Shark predation mitigation
- Aggressive males
- Relocation
- Worming
- Captive feeding and care
Objectives

• Will providing nutritional supplementation and protection enhance the survival of young female seals.
 - Would seals survive captivity?
 - Would seals gain weight?
 - Would seals forage normally after release?
 - Would seals survive post-release?

• Develop partnerships between Federal agencies and private organizations.

• Develop strategies for future applications of captive feeding programs.
Methods

• A total of seven Hawaiian monk seals (HMS) were held.
• Two seals were female fraternal twins born on Midway and were quarantined at Kewalo Research Facility – May 27–October 17, 2006.
• At Midway: held in temporary beach pens that were at least 30 x 130 ft with 1/4-1/3 of this being water area.
• Fed human-quality Atlantic herring two to three times per day. Multivitamin supplements were administered daily and the seals were weighed weekly.
Pre-Release Results

- Weaners were in captivity for 89 - 297 days.
- Change of body weight from 31 - 143%.
- PV02 (yearling) held for 23 days and eventually died.
Post-Release Monitoring

- Seals were tracked for between 38 - 96 days.

- Seals initially lost weight.
 - Two continued to deteriorate in body condition
 - Four stabilized or improved.

- The captive-fed seals foraged in shallow waters (< 20 m) after release and progressively dive deeper.
Post-Release Monitoring
Post-Release Monitoring

• Seals initially lost weight.
 • Two continued to deteriorate in body condition
 • Four stabilized or improved.

• Seals were tracked for between 38 - 96 days.

• The captive-fed seals foraged in shallow waters (< 20 m) after release and progressively dived deeper

• Four seals disappeared while in good condition.
 One continued to lose condition.
 One disappeared over the winter/spring.
Conclusions and Considerations

- Demonstrated that young seals could be held in captivity and successfully fed.
- Older juvenile seals (age 1-3 years) may be more susceptible to stress in captive care.
- Benefit to allowing seals time to free forage before capture.
- Low post-release survival. Issues of dealing with predation, continued nutritional stress, etc.
- Need for controlled environment.
- Partnerships work.
Acknowledgements

NOAA, Pacific Island Fisheries Science Center; The Marine Mammal Center; SeaWorld, San Antonio; Hubbs-SeaWorld Research Institute; USFWS; NWS; and USCG. We thank all the individuals that made this project a success, especially Elise Christenson, Aaron Dietrich, Leona Laniawe, Dan Luers, Jamie King, Amber Makie, Steve Smith, Mark Urby, Dave Yordi, Liz Kashinsky, Darin Padula, Jessica Lopez, Kara Lee, Ku’ulei Vickery, Stan Jensen, Ingrid Overgard, and all the residents at Midway Atoll.