

Cooperative research between TNC, USGS BRD, and Resource Mapping Hawaii

A short history of remote sensing products for vegetation mapping in Hawaii

- Black and white aerial photography
- Analog color and infrared aerial photography
- Satellite based imagery
 - MODIS
 - Landsat
 - Quickbird / IKONOS
 - Hyperion
- Aerial based digital multi-spectral data
- Aerial based hyperspectral and LIDAR data

Problems associated with plant species mapping in Hawaii

- Intense native species diversity
- Numerous invasive species
- Remote areas difficult to access on ground
- Cloud cover often confounding
- Many cases of extreme topographic relief
- Availability of data products that are both current and applicable.
- Costs of data products and related analysis

Evolution of Resource Mapping Hawaii LLC

- Preliminary pilot project through USGS with support from TNC, Army, and Forest Service
- Follow up project again through USGS to collect imagery for TNC Kauai specifically for Australian tree fern and Hakalau National Wildlife Refuge
- New system development resulting from limitations discovered from earlier projects.
- Permanent system now based in Kauai with a mandate to serve the goals of conservation within the Pacific

A subsection of the natural color with it's corresponding multispectral. The multispectral shows better spectral discrimination between trees while the natural color has more detail. A three times increase in spatial resolution in the natural color was sufficient to visually distinguish many tree species in Hakalau National Wildlife Reserve but not all.

Duel scale system components

- 4 band multi-spectral Duncantech camera
- 2 x medium format Mamiya natural color cameras
- INS (internal navigation system)
- GPS (with Omnistar license) RMS 5m
- Radiometer (conversion to percent reflection)
- Gimbal stabilizing system
- Profiling laser
- Computing cluster and storage array

Technical Differences Between the Multispectral and Natural Color Camera Systems

The MS-4100 multispectral camera uses three 1,916 by 1,078 pixel sensors with a beam splitting prism and dichotic trim filters to extract precise separate bands of the spectrum.

This use of separate sharp-cut filters provides the consistent radiometric response of the system.

RM natural color camera uses a single large sensor (5,616 by 3,744 pixels) with small dye patches over each pixel in a Bayer pattern of red, green and blue.

The monochrome image recorded by the camera is converted to RGB 3-band color by interpolating each pixel's missing colors from its neighbors.

The results approximate normal color and can be interpreted visually, but lack the spectral separation for sophisticated radiometric analysis.

©Resource Mapping

Data products and some applications

- 4 band multi spectral imagery at 20 cm resolution
- 3 band natural color imagery at 2 cm resolution
- Visible surface digital elevation model (DEM)
- Very high resolution data maximizes visual interpretability
- A number of plant species do not have unique spectral signatures that can be used to identify them using automated analysis techniques
- Not limited to plant species identification but anything that can be seen from above
 - Animal surveys under open to semi open conditions
 - Near shore reconnaissance
 - Land use mapping
 - Individual tree tracking over time
 - Photogrametric measurement of features or vegetation

Difference between image analysis and interpretation

Image analysis

- An automated approach to image classification
- Generally requires specialized classification software
- Minimizes observer error by applying rules across entire data set

Image interpretation

- Relies on the skills of an expert interpreter
- Does not require any specialized software but can incorporate it.
- Takes advantage of our best recognition tool, i.e. human brain.

Example swath, coastal Kauai

15cm multi-spectral 2cm natural color

The natural color images overlap each other 60% to provide good stereo, and the two sets of imagery from the right and left looking cameras overlap each other 10%, providing a 12,000 pixel swath at 10 times the resolution of the multispectral imagery.

At full resolution (above) or 200% (left), the natural color imagery can capture fine detail of the shallow reef structure.

Acknowledgements

The Nature Conservancy Hawaii

Suzanne Case, Trae Menard

US Geological Survey BRD

James Jacobi, Loyal Merhoff

Resource Mapping Hawaii

Dana Slaymaker, Jim Hoffert

Fly Kauai

Ray Smith

Questions of cost and availability

Please refer all questions of this nature to Resource Mapping Hawaii representatives Dana Slaymaker and Jim Hoffert

There is a table in the vendors section of the conference hall

Web site: HTTP://resourcemappinggis.com