The Good (Jojoba), The Bad (Jatropha) And The Ugly (Chinese Tallow)

Using Weed Risk Assessment To Select Non-Invasive Biofuel Crops in the Hawaiian Islands.

Chuck Chimera & Chris Buddenhagen
What are biofuels

- Plant-derived substitutes for petroleum
- Two categories of liquid biofuels
 - First generation
 - Ethanol (from plant starch, sugar)
 - Biodiesel (from plant & animal oils)
 - Second generation
 - Cellulose (Schubert 2006)
Hawaii’s Biofuel Goals

• 1994: Act 199
 – 10% ethanol content required in gasoline
• 2004: Act 95, Renewable Portfolio Standard
 – 20% net electric sales from renewable energy by 2020
• 2006: Act 240, Alternate Fuel Standard goals
 – 20% highway fuels from alternate fuels by 2020
Purported Benefits of Biofuels

• Renewable
• Reduced greenhouse gas emissions
• Energy security & independence
• Support of agricultural industries
• Diversified economy

www.bendbiofuels.com/
Problems With Biofuels

- Technology & Markets
- Land & water use
- Soil depletion
- Chemical use
- Food vs energy
- Limited greenhouse benefits
- Biodiversity impacts
- Weed risks

Top Image: http://www.greenpeace.org.uk
Bottom Image: www.mygreenelement.com
• “traits deemed ideal in a bioenergy crop are also commonly found among invasive species”
 – Hardiness, water thrift, pest/disease resistance, ability to outcompete other plants

Invasive plants in natural areas

Purposeful introductions 91%

Crop/other use 56 52%
Ornamental 41 39%

Accidental Introductions 10 9%

Smith, C. W. 1985

• The plants that pose the greatest threats are ones that we brought in on purpose.

Photo by Forest & Kim Starr
Methods: Species Evaluation

BIODIESEL

Biodiesel Crop Implementation in Hawaii

By
Michael D. Petroet
Hawaii Agriculture Research Center
Aiea, HI 96701

Prepared for:
The State of Hawaii
Department of Agriculture

Under Contract Number:
HDOA-2006-2

September 2006

BIOMASS

Physicochemical Analysis of Selected Biomass Materials in Hawaii

Prepared for:
State of Hawaii
Department of Business, Economic Development and Tourism

by
University of Hawaii
Hawaii Natural Energy Institute
School of Ocean and Earth Sciences and Technology

Scott Q. Turn
Vheissu Keffer
Keith Beers
Methods: Invasion Process

- transport from abroad
- release
- establishment
- spread
- "tens rule"
- pest / impacts
 - ecological
 - economic
 - human health

Williamson and Fitter 1996
Hawaii Weed Risk Assessment System

49 questions
- climate/distribution
- domestication
- weed elsewhere
- undesirable traits
- plant type
- reproduction
- dispersal
- persistence attributes

Prediction
- Score 1-6
 - < 1: Low Risk
 - 1-6: Evaluate
 - > 6: High Risk

second screening

High Risk
Low Risk
Results

• 32 Species Evaluated

• 21 High Risk
 – 66%

• 3 Evaluate
 – 9%

• 8 Low Risk
 – 25%
Results

• 30 of 32 Introduced

• 18 Naturalized
 – 60% (e.g. Avocado)
 – 10% = ca. 3 spp.

• 12 Invasive
 – 40% (Strawberry Guava)
 – 10% = <1

Photos by Forest & Kim Starr
Results

• WRA Analysis (n=32)

• 27 Naturalized Somewhere (84%)

• 20 Weeds (66%)
 – Disturbance, Agriculture, Environmental

Photo by Forest & Kim Starr
Results

- **“Weedy” Attributes**
 - Viable Seed Production (100%)
 - Broad climate suitability (81%)
 - Tolerates mutilation, cultivation, fire (75%)
 - Reproductive ≤ 3 Years (69%)
 - Tolerates wide range of soils (69%)
 - Self-compatible (56%)
 - Form dense thickets (53%)
The Good

• 8 Species
 – Low Risk (WRA)

• *Simmondsia chinensis*
 – Not naturalized or weedy anywhere
 – Slow to reproductive maturity
 – Seeds not easily dispersed
The Bad

• 15 Species
 – High Risk (WRA)
 – Already naturalized

• *Jatropha curcas*
 – “Weedy” elsewhere
 – Toxicity
 – Forms dense stands
 – Reproduces quickly
 – Seeds water-dispersed
 – Non-weedy traits
 • Large seeds
The Ugly

- 5 species
 - High Risk
 - Weeds Elsewhere
 - Not Naturalized in Hawaii

- **Triadica sebifera**
 - Environmental weed
 - Toxic
 - Shade tolerant
 - Forms dense stands
 - Prolific seed production
 - Bird-dispersed
 - Resprouts after cutting
“Each tree produces up to 100,000 seeds a year, which are dispersed by birds and water and can remain viable for decades.” (Low and Booth 2007)
The ???

• 4 Species
 – Not weedy elsewhere
 – Not naturalized in HI

• 3 of 4 Species
 – Evaluate (WRA)
 – Little information

• 1 of 4 Species
 – High Risk (WRA)

Photos by Forest & Kim Starr
Algae as Biofuel

• Higher energy yield
• Smaller ecological footprint
• Currently more expensive
• Non-native algae can become invasive\(^1\)

\(^1\)Smith et al. 2002

Photo: Reuters – Cindy Fernandez
Discussion

• Biofuels are high risk species

• Exceptions to “Tens Rule”
 – 21 of 32 High Risk (WRA)
 – 12 of 32 invasive in Hawaii
 – 21 of 32 weeds elsewhere

• Crop plants
 – “strongly selected to grow where they are cultivated”¹

¹Williamson and Fitter 1996
Discussion

• Propagule Pressure
 - “A single consistent correlate of establishment success”¹

• Lag Time
 - “long periods of seemingly consistent behavior can be poor predictors of what invaders will do in the future”²

Conclusions

• Don’t assume biofuel production is benign.
• Use low-risk species
• Proven technology prior to planting
• Employ “polluter pays” policy
• No planting near or conversion of important biological areas
Acknowledgements

• Shahin Ansari
• Huang-Chi Kuo
• Stephanie Joe
• Curt Daehler
• Lloyd Loope
• Clint Eastwood
• Sergio Leone