What's Up With The Mud

Quantifying the Phosphorus Sorption Capacity of Hawaiian Coastal Wetlands

Gwen DeMent
University of Hawai‘i at Manoa
Dept of Natural Resources & Environmental Management
Soil & Water Conservation Lab
A Brief Outline...

- Introduction & Background
- Objectives & Hypotheses
- Methodology
- Results
- Conclusion
COASTAL WETLANDS

- Provide many valuable functions
 - Protect & Stabilize Shoreline
 - Flood Control
 - Act as Sediment Traps
 - Biogeochemical Cycling

Kawaiele Wetland, Kauai
PHOSPHORUS

✓ Primary limiting nutrient
✓ Travels attached to soil particles
✓ Strength of sorption determines bioavailability
✓ Factors affecting sorption...

✓ Texture
✓ Mineralogy
✓ Competing Ions
✓ Organic Content

Schematic of phosphate (PO$_4^{3-}$) molecule
PHOSPHORUS

But too much P can lead to...

1) Waterway Eutrophication
2) Invasive Species Dominance
3) Coral Reef Degradation

Wetlands are a primary defense mechanism
OBJECTIVES

i. Measure P sorption capacity

ii. Examine any variability in P sorption
 i. Within sites along the hydrologic gradient
 ii. Among sites of different wetland types

iii. Determine if P sorption is correlated to commonly-measured soil variables
i. Position along hydrologic gradient will account for a significant amount of variance within sites

ii. P sorption will vary across different site types (i.e. soil orders, created vs. natural, fresh vs. euhaline)

iii. Soil variables will be correlated with P sorption
METHODOLOGY

40 sites on 5 islands

- 2 transects / site
- 3 cores / transect
- P sorption measured
- PSI Index created

PSI = x/log c

(Bache & Williams 1971)
STATISTICAL SUMMARY

PSI

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>139.9</td>
</tr>
<tr>
<td>Standard Error</td>
<td>14.9</td>
</tr>
<tr>
<td>Median</td>
<td>76.7</td>
</tr>
<tr>
<td>Range</td>
<td>1748.9</td>
</tr>
<tr>
<td>Minimum</td>
<td>-16.4</td>
</tr>
<tr>
<td>Maximum</td>
<td>1732.5</td>
</tr>
<tr>
<td>Count</td>
<td>242</td>
</tr>
</tbody>
</table>

PSI = x/log c

![Histogram showing frequency distribution of PSI values]
HYDROLOGIC EFFECTS

1-Way ANOVA
F = 4.95, p = 0.008

Bars represent the means (± 1 standard error). Different letters indicate a significant difference (p<0.05)
SALINITY EFFECTS

1-Way ANOVA
F = 2.90, p = 0.036

Bars represent the means (± 1 standard error). Different letters indicate a significant difference (p<0.05)
EFFECTS OF STATUS

1-Way ANOVA
F = 2.10, p = 0.126

Bars represent the means (± 1 standard error). Different letters indicate a significant difference (p<0.05)
SOIL ORDER EFFECTS

1-Way ANOVA
F = 3.97, p = 0.000

Bars represent the means (± 1 standard error). Different letters indicate a significant difference (p<0.05)
CORRELATIONS

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>LOI°</th>
<th>TC°</th>
<th>Clay (%)</th>
<th>Silt (%)</th>
<th>Sand (%)</th>
<th>A_{ox}</th>
<th>F_{ox}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI</td>
<td>-0.41</td>
<td>0.20</td>
<td>n.s.*</td>
<td>n.s.*</td>
<td>0.17</td>
<td>-0.18</td>
<td>n.s.*</td>
<td>n.s.*</td>
</tr>
</tbody>
</table>

- Not significant at p-value < 0.05
- Variable log transformed
- Correlation carried out on subset of data ($n = 48$)
CONCLUSION

Objective: To examine P sorption in coastal wetlands

Result: Yes, hydrologic gradient, salinity & soil order significant, but not wetland status

Implications:
- Help identify wetlands best at sorbing P
- Determine wetlands at risk from P overload
- Identify best predictive characteristics

Future research:
- Continue to measure amorphous Fe and Al
ACKNOWLEDGEMENTS

Dr. Greg Bruland
Landowners and Managers for allowing access for sampling
Joe Lichwa for assistance with running PSI samples on the IC
Xuexin Huang at ADSC for assistance with the ICP-AES

Thank You