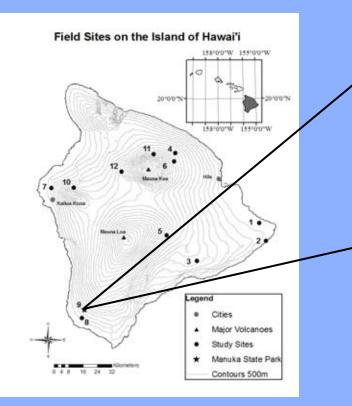
Parasitic Mites (*Knemidokoptes jamaicensis*) Found in Hawai`i `Amakihi (*Hemignathus virens*) on the Island of Hawai`i: A New Threat to Hawaiian Honeycreepers?

Jacqueline M. Gaudioso, University of Hawai`i at Hilo

Dennis A. LaPointe, USGS; Pacific Islands Ecosystem Research Center

Patrick J. Hart, University of Hawai`i at Hilo


Overview

- Time and place of first detection of mange in `amakihi
- Field and laboratory methods of species identification
- Demographics of affected `amakihi
- Background of Knemidokoptes jamaicensis
- Modes of introduction of K. jamaicensis to Hawai`i
- > Modes of transmission of *K. jamaicensis* in `amakihi
- Implications & further investigations

"Tempura feet"?

First Detection: June 14th, 2007

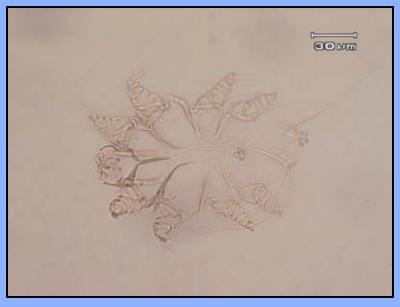
Manukā Natural Area Reserve & Manukā State Park, Ka`ū (1953 ft. elevation)

AHY Female

ASY Male

Field Methods

- All `amakihi were mist-netted, measured, and banded with federal aluminum bands
- Lesion scrapings taken from 3 individuals exhibiting 3 different stages of mange (early, middle, advanced)
- Scrapings were stored in 95% ethanol
- All mist-nets and instruments with which affected `amakihi came in contact were disinfected



Laboratory Methods

- Scrapings were cleared with 10% KOH and ecto-parasites found were cleared with 1:1 lactic acid to glycerol solution (see Krantz 1978)
- Specimens mounted in Hoyer's medium onto slides for species identification by James W. Mertins
- Voucher specimens deposited in USDA-National Veterinary Services Laboratory (Ames, Iowa) and The Bishop Museum (Honolulu, Hawai`i)

Knemidokoptes jamaicensis "scaly leg mite"

Male

- > The entire three-week life cycle is spent on the bird host
- Mites burrow into the epithelium, forming tunnels
- Mites feed on keratin
- Transmitted by direct or prolonged close contact between birds (Wade 2006)

Distribution of Knemidokoptes jamaicensis

Original world map from: www.gl.iit.edu

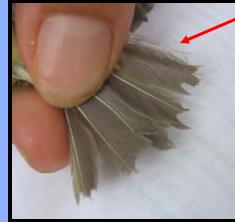
(Turk 1950; Fain & Elsen 1967; Voinov et al. 1978; Kirmse 1996; Pence et al. 1999; Latta & O'Connor 2001; Latta 2003; Gaudioso et al. accepted)

Demographics of affected individuals at Manukā

Bird ID	Sex	Age	Mange status	
231144489	F	AHY	Advanced*	9/34 `amakihi
231144556	Μ	AHY	Early*	(new captures) affected
231144613	Μ	AHY	Early	= 26.5%
231144483	Μ	AHY	Early	
231144649	Μ	AHY	Advanced	n _F = 9 n _M = 14
231144616	Μ	AHY	Advanced	n _∪ = 11
231144656	Μ	ASY	Advanced	
232152653	U	HY	Early	
231144640	U	HY	Middle*	* Scrapings taken

(Gaudioso et al. accepted)

Stages of knemidokoptic mange



Early

Middle

Advanced

How does knemidokoptic mange affect `amakihi condition?

Average mass (grams) by mite presence

	Total	Females	Males	Sex Unknown
No	11.77 g	11.60 g	12.15 g	11.53 g
mange	N=25	N=8	N=8	N=9
Mange	11.64 g	11.90 g	11.53 g	11.85 g
	N=9	N=1	N=6	N=2
	p =0.370	p =n/a	p = 0.146	p =0.364

Knemidokoptid mites in Hawai`i:

What we know:

- 1. Knemidokoptid mites were not found in `amakihi in an island-wide study of parasites (vanRiper 1991)
- 2. Knemidokoptid mites were not found during past studies in the Manukā region (C. Atkinson & E. VanderWerf, personal comm.)
- 3. Only *K. mutans* and *N. gallinae* found in domesticated chickens in Hawai`i (Bice 1932)
- 4. *K. pilae* found in caged parakeets on Oahu (Goff 1987)

It 'mite' have been introduced via...

An opportunistic host shift

Is a non-native species found on Hawai`i Island harboring K. jamaicensis?

Was K. jamaicensis recently introduced to Manukā via a released, domesticated or feral bird?

Ν

D

R

Ε

It 'mite' be transferred by.... Copulatory transfer > Are mites being transferred directly during mating? Parent-offspring transfer

To what extent are mites transferred from parents to offspring in the nest?

Transfer due to aggregations

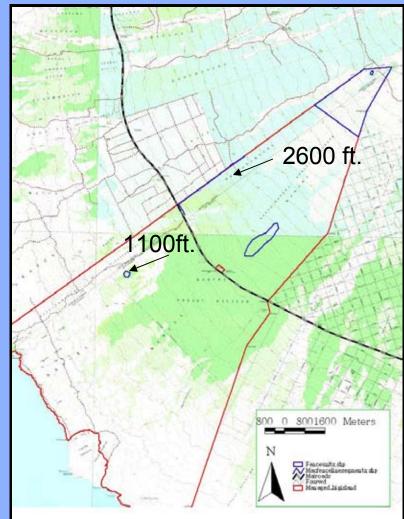
Are mites being transferred by prolonged contact during aggregations (i.e., communal roosting)

Phoretic transfer

Does a vector for K. jamaicensis exist (i.e., hippoboscid flies; Jovani et al. 2001)?

Sex-specific behavior

Is the transfer of mites a result of a sex-specific behavior in 'amakihi (i.e., male-male competition)?


A new threat to Hawaiian honeycreepers?

- Long-term effects: Severe mange can cause deformities, inability to perch, preen, and forage (Pence et al. 1999)
- Immuno-compromised: Does malarial or pox infection facilitate infestation of Knemidokoptid mites?
- Parasite specificity: What other native bird species are susceptible to knemidokoptic mange?
- Distribution of K. jamaicensis in Hawai`i: Does K. jamaicensis exist elsewhere in Hawai`i?
- Optimal environmental & biogeographical conditions: Why Manukā? (i.e., rainfall, elevation, vegetation structure (Latta & O'Connor 2001))

Further investigations

- Expand the range of mistnetting in the Manukā Natural Area Reserve
- 2 proposed sites at Manukā NAR: 1100 ft. and 2600 ft.
- Capture feral chickens and potential invertebrate vectors to identify modes of introduction and transmission
- Arrange a working group to address management options

Map courtesy of NARS/DOFAW

Acknowledgments

Collaborators and Reviewers:

James W. Mertins, Carter Atkinson, Eric VanderWerf, Lisa Hadway, Ian Cole and M. Lee Goff

Field assistance:

Bobby Hsu, Roland Frayne, Peter Linneman, Molly Timmers, Irena Nabers, Corinna Pinzari, Ginger Ryman, Megan Lamson, Jennifer Randall, and Hyemin Choi

Funding and Support:

- University of Hawai`i at Hilo (TCBES program)
- **EPSCoR**
- USDA

• L

- The Bishop Museum
- USGS Invasive Species Program
- DOFAW and The Natural Area Reserves System
- PRISM/ GK-12 program (NSF)
- Hawai`i Audubon Society
- The Western Bird Banding Association