Identifying ‘2nd-generation’ biofuel crops and their capacity for invasiveness in Hawaii

Michael Poteet
Agronomist
Hawaii Agriculture Research Center (HARC)
Aiea, HI
Mpoteet@harc-hspa.com
Outline

• Agronomic development – biofuel crops
• ‘2nd generation’ biofuel crops
• ‘2nd generation’ invasives?
• Early data on jatropha in managed conditions
• Responsible R&D for sustainable biofuel production
Agronomic vs. Invasive Characteristics

• Easily propagated
• Environmentally adaptable
• Heavy seed and/or biomass yield
• Rapid growth
• Low-input (drought tolerant, low fertility requirements)
• Perennial vs. Annual
Biofuel Crop Options

• Sugar/Lignocellulosic
 – Corn
 – Sugarcane
 – Switchgrass
 – Sorghum
 – Banagrass
 – Giant Reed
 – Guineagrass
 – Albizia
 – Luecaena

• Oils
 – African oil palm
 – Coconut
 – Soybean
 – Canola
 – Algae
 – Jatropha curcas
 – Kukui
 – Moringa oleifera
 – Camelina
 – Castor
‘2nd Generation’ Crops

- ‘2nd generation’ basically implies experimental crops
 - Little commercial development in place internationally
 - Further efforts at domestication needed
 - Lessened inputs w/ greater potential yields often cited
- Are these crops potentially invasive???
Hawaii’s potential ‘2nd generation’ crops

• Fast-growing ‘energy grasses’
 – Banagrass, switchgrass, guineagrass

• Fast-growing tree species
 – *Albizia*, *Luecaena*, poplars?

• Perennial oilseed-bearing species
 – Kukui, *Jatropha curcas*, *Moringa oleifera*

• Algae
Possible invasive biofuel crops in Hawaii

- Guineagrass
- Chinese tallow tree
- *Jatropha curcas*
- Haole koa (*Luecaena* sp.)
- Kukui
- Castor
- Algae
Agronomic case study: Jatropha

Totals extrapolated from data taken in Kunia (Central Oahu) from field planted in Sept. 07. Numbers represent a per acre basis for 1,000 trees/acre. Assume 2.68 seeds per nut.

<table>
<thead>
<tr>
<th>Flow Rate</th>
<th>India</th>
<th>Mada</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Nuts</td>
<td>51200</td>
<td>49300</td>
</tr>
<tr>
<td></td>
<td>Seeds</td>
<td>137K</td>
<td>132K</td>
</tr>
<tr>
<td>Low</td>
<td>Nuts</td>
<td>41250</td>
<td>55600</td>
</tr>
<tr>
<td></td>
<td>Seeds</td>
<td>110K</td>
<td>149K</td>
</tr>
</tbody>
</table>
Agronomic case study: *Jatropha*

- *Jatropha* sp. Includes over 180 species
- *J. gossypifolia* is highly invasive and toxic
- *J. curcas* often given invasive label due to toxicity and presence of invasive members within genus
 - Some worrisome char. ➔ vegetative prop.
Agronomic case study: Jatropha

• Attempting to develop a system for automated production

• Direct-seeding, drip irrigation, minimum tillage

• Removal of fruits from soil surface, tree branches, or both
Balancing production with potential degradation

• Research in crop development must address ecological impacts
 – Focus programs to incorporate data collection on invasive nature of species

• Long-term cropping systems vs. short rotation systems
 – Questions of sustainable production

• Non-food vs. Food crops
Responsibility of research community

• Agriculturalists coordinate with weed ecologists

• Advocacy groups given input and updates on work with ‘2nd generation’ crops

• Encourage public officials and agencies to establish protocol for new commercial operations where potential invasives are utilized

• Keep communities abreast of activities