Identifying '2nd-generation' biofuel crops and their capacity for invasiveness in Hawaii

Michael Poteet Agronomist Hawaii Agriculture Research Center (HARC) Aiea, HI Mpoteet@harc-hspa.com

Outline

- Agronomic development biofuel crops
- '2nd generation' biofuel crops
- '2nd generation' invasives?
- Early data on jatropha in managed conditions
- Responsible R&D for sustainable biofuel production

Agronomic vs. Invasive Characteristics

- Easily propagated
- Environmentally adaptable
- Heavy seed and/or biomass yield
- Rapid growth
- Low-input (drought tolerant, low fertility requirements)
- Perennial vs. Annual

Biofuel Crop Options

- Sugar/Lignocellulosic
 - Corn
 - Sugarcane
 - Switchgrass
 - Sorghum
 - Banagrass
 - Giant Reed
 - Guineagrass
 - Albizia
 - Luecaena

• Oils

- African oil palm
- Coconut
- Soybean
- Canola
- Algae
- Jatropha curcas
- Kukui
- Moringa oleifera
- Camelina
- Castor

'2nd Generation' Crops

- '2nd generation' basically implies <u>experimental</u> crops
 - Little commercial development in place internationally
 - Further efforts at domestication needed
 - Lessened inputs w/ greater potential yields often cited
 - Are these crops potentially invasive???

Hawaii's potential '2nd generation' crops

- Fast-growing 'energy grasses'

 Banagrass, switchgrass, guineagrass
- Fast-growing tree species
 Albizia, Luecaena, poplars?
- Perennial oilseed-bearing species
 Kukui, Jatropha curcas, Moringa oleifera
- Algae

Possible invasive biofuel crops in Hawaii

- Guineagrass
- Chinese tallow tree
- Jatropha curcas
- Haole koa (Luecaena sp.)
- Kukui
- Castor
- Algae

Agronomic case study: Jatropha

Totals extrapolated from data taken in Kunia (Central Oahu) from field planted in Sept. 07. Numbers represent a per acre basis for 1,000 trees/acre. Assume 2.68 seeds per nut.

		9 month totals		
Flow Rate		<u>India</u>	<u>Mada</u>	Ш
High	Nuts	51200	49300	34100
	Seeds	137K	132K	90K
Low	Nuts	41250	55600	73500
	Seeds	110K	149K	197K

Agronomic case study: Jatropha

- *Jatropha* sp. Includes over 180 species
- *J. gossypifolia* is highly invasive and toxic
- J. curcas often given invasive label due to toxicity and presence of invasive members within genus
 - Some worrisome char.
 → vegetative prop.

Agronomic case study: Jatropha

- Attempting to develop a system for automated production
- Direct-seeding, drip irrigation, minimum tillage
- Removal of fruits from soil surface, tree branches, or both

Balancing production with potential degradation

- Research in crop development must address ecological impacts
 - Focus programs to incorporate data collection on invasive nature of species
- Long-term cropping systems vs. short rotation systems

- Questions of sustainable production

Non-food vs. Food crops

Responsibility of research community

- Agriculturalists coordinate with weed ecologists
- Advocacy groups given input and updates on work with '2nd generation' crops
- Encourage public officials and agencies to establish protocol for new commercial operations where potential invasives are utilized
- Keep communities abreast of activities

Mahalo

